
OnToma

Aug 04, 2021

Contents

1 Introduction 1

2 Installing OnToma 3

3 Running OnToma from CLI 5

4 Running OnToma from Python code 7

5 Speeding up subsequent OnToma runs 9

6 Contents 11
6.1 Development . 11
6.2 OnToma interface . 12
6.3 ZOOMA wrapper . 13
6.4 OXO wrapper . 13

Python Module Index 15

Index 17

i

ii

CHAPTER 1

Introduction

OnToma is a Python module which maps the disease or phenotype terms to EFO, the ontology used in the Open Targets
platform.

Note: More precisely, only a subset of EFO is used in the Open Targets platform, called EFO slim. It is released
alongside with every new version of EFO.

OnToma supports two kinds of inputs: either identifiers from other ontologies (e.g. OMIM:102900), or strings (e.g.
pyruvate kinase hyperactivity).

The way OnToma operates is by trying a series of lookups in EFO and also querying tools from the EBI ontology stack
such as OxO and ZOOMA.

For each input, it will return anywhere from zero to multiple matches in EFO. This version of OnToma only returns
mappings which are considered of high quality.

For each input type, you can run OnToma from command line or directly from other Python code.

1

https://www.ebi.ac.uk/efo/

OnToma

2 Chapter 1. Introduction

CHAPTER 2

Installing OnToma

pip install --upgrade ontoma

3

OnToma

4 Chapter 2. Installing OnToma

CHAPTER 3

Running OnToma from CLI

In this mode, the input is a file or STDIN, with one input per line:

echo -e 'asthma\npyruvate kinase hyperactivity' | ontoma --input-type string
echo -e 'OMIM:102900\nOMIM:104310' | ontoma --input-type ontology

The output format is a TSV file, containing one query-to-EFO mapping per line. The columns to include are config-
urable via the --columns flag and can include the following:

• query: The original query, e.g. asthma

• id_normalised: The EFO term ID in the internal normalised CURIE representation as used by OnToma,
e.g. EFO:0000270.

• id_ot_schema: The EFO term ID as supported by the Open Targets JSON schema, e.g. EFO_0000270.

• id_full_uri: The full EFO term URI, e.g. http://www.ebi.ac.uk/efo/EFO_0000270.

• label: The normalised (lower case) label as specified in EFO, e.g. asthma.

By default, two columns are included: query and id_ot_schema.

In case no results were found, the query will be missing from the output. In case multiple results were found, the query
will appear multiple times in the output.

You can read about additional flags by running ontoma --help.

5

OnToma

6 Chapter 3. Running OnToma from CLI

CHAPTER 4

Running OnToma from Python code

from ontoma import OnToma
otmap = OnToma()
result_code = otmap.find_term('OMIM:102900', code=True)
result_string = otmap.find_term('asthma')
Columns are available as attributes.
print(result.id_ot_schema) # Prints 'EFO_0000270'.

7

OnToma

8 Chapter 4. Running OnToma from Python code

CHAPTER 5

Speeding up subsequent OnToma runs

When you initialise an OnToma client, it needs to download and parse the latest EFO OT slim release. Depending on
your internet connection, it may take anywhere from 10 seconds to a few minutes.

To speed up subsequent OnToma runs, you can specify a cache directory to avoid doing this every time. This can be
supplied by a --cache-dir option in the CLI or by a cache_dir parameter in the Python interface.

9

OnToma

10 Chapter 5. Speeding up subsequent OnToma runs

CHAPTER 6

Contents

6.1 Development

6.1.1 Set up environment

git clone https://github.com/opentargets/OnToma.git
python3 -m venv env
source env/bin/activate
pip install --editable .

6.1.2 Install development packages

python3 -m pip install --upgrade \
build pip twine \
pytest \
sphinx sphinx-rtd-theme

6.1.3 Adding a dependency

Installation dependencies are stored in the setup.py file, in the install_requires section.

6.1.4 Releasing a new version

1. Modify the version in the VERSION file.

2. Add a tag: git tag $(cat VERSION) && git push origin --tags.

3. Create a release on GitHub.

4. Generate distribution archives: python3 -m build.

11

OnToma

5. Upload the release: python3 -m twine upload dist/*. Use the usual login and password for PyPi.

6.1.5 Performing a comparison benchmark

This can be used in case of major updates to OnToma algorithm to make sure they don’t break things significantly.

1. Call benchmark/sample.sh to create a random sample of input strings. This will fetch 100 random records
each from ClinVar, PhenoDigm, and gene2phenotype sources. Together they are thought to cover a wide range
of use case well. Due to deduplication, the final file sample.txt may contain slightly less than 300 records.

2. Optionally, to add some additional samples from PanelApp JSON file, you can do: jq 'keys[]'
diseaseToEfo_results.json | tr -d '"' | shuf -n 100 >> sample.txt; sort
-uf -o sample.txt sample.txt.

3. Process the file so that the final output format is a two column TSV file with the following columns: original query; full URI for an EFO term. Do not include the header.

• For OnToma pre-v1.0.0, use: time ontoma sample.txt - | awk -F$'\t' '{if
(length($2) != 0) {print $1 "\t" $2}}' | tail -n+2 > ontoma_old.
txt.

• For OnToma v1.0.0+, use: time ontoma --cache-dir EFO_CACHE --columns
query,id_full_uri <sample.txt | tail -n+2 >ontoma_new.txt.

4. Collate the results by using benchmark/collate.py --old ontoma_old.txt --new
ontoma_new.txt > benchmark_comparison.txt. Load the resulting file into Google Sheets
and manually mark the mappings as good/bad/uncertain. Exact, letter to letter matches are marked as good
automatically.

6.2 OnToma interface

Main interface class.

class ontoma.interface.OnToma(cache_dir=None, efo_release=’latest’)
Open Targets ontology mapping wrapper. Please refer to documentation for usage details.

filter_identifiers_by_efo_current(normalised_identifiers)
Returns a subset of the idenfitiers which are in EFO and not marked as obsolete.

find_term(query: str, code: bool = False, suggest: bool = False)→ list
For a given query (an ontology identifier or a string), find matches in EFO Open Targets slim.

The algorithm operates in a series of steps. If a given step is successful, the result is returned immediately,
and the remaining steps are not executed. If all steps fail to provide a match, None is returned. Note that in
general more than one mapping can be returned. This can happen for complex traits which require more
than one ontology term to represent them.

If the code flag is specified, it is assumed that the query is an ontology identifier, such as ‘OMIM:615632’,
and the following steps are attempted: 1. See if the term is already in EFO OT slim OWL file. 2. Match
terms by cross-references (hasDbXref) from the OWL file. 3. Mapping from the manual cross-reference
database. 4. Request through OxO with a distance of 2.

If the query is a string, the following steps are attempted: 5. Exact name match from EFO OT slim OWL
file. 6. Exact synonym (hasExactSynonym) from the OWL file. 7. Mapping from the manual string-to-
ontology database. 8. High confidence mapping from ZOOMA with default parameters.

12 Chapter 6. Contents

OnToma

The following functionality is planned, but not yet implemented. — If the query is a string, and additionally
the suggest flag is specified, additional steps are attempted: 9. Inexact synonyms (hasRelatedSynonym)
from the OWL file. 10. Any confidence mapping from ZOOMA with default parameters.

Args: query: Either an ontology identifier, or the disease/phenotype string to be matched to an EFO code.
code: Whether to treat the query as an ontology identifier. suggest: Whether to report low quality
mappings which are not guaranteed to be contained in EFO OT slim.

Returns: A list of values dependent on the verbose flag (either strings with ontology identifiers, or a
dictionary of additional information). The list will be empty if no hits were identified.

get_label_from_efo(normalised_identifier)

step01_owl_identifier_match(normalised_identifier)
If the term is already present in EFO, return it as is.

step02_owl_db_xref(normalised_identifier)
If there are terms in EFO referenced by the hasDbXref field to the query, return them.

step03_manual_xref(normalised_identifier)
Look for the queried term in the manual ontology-to-ontology mapping list.

step04_oxo_query(normalised_identifier)
Find cross-references using OxO.

step05_owl_name_match(normalised_string)
Find EFO terms which match the string query exactly.

step06_owl_exact_synonym(normalised_string)
Find EFO terms which have the query as an exact synonym.

step07_manual_mapping(normalised_string)
Find the query in the manual string-to-ontology mapping database.

step08_zooma_high_confidence(normalised_string)

step09_owl_related_synonym(normalised_string)

step10_zooma_any(normalised_string)

6.3 ZOOMA wrapper

ZOOMA API wrapper.

class ontoma.zooma.ZoomaClient(zooma_base=’https://www.ebi.ac.uk/spot/zooma/v2/api’)
Simple client to query ZOOMA. Will look in all curated datasources and perform a fuzzy search in EFO. Only
HIGH quality mappings are considered.

search(query_string)
Query ZOOMA and return all high confidence mappings.

6.4 OXO wrapper

Wrapper for the OxO API.

class ontoma.oxo.OxoClient(base_url=’https://www.ebi.ac.uk/spot/oxo/api’)
OxO wrapper class.

6.3. ZOOMA wrapper 13

OnToma

search(ids=None, mapping_target=’EFO’, distance=1)
Query OxO with given parameters and yield the found mappings one by one.

14 Chapter 6. Contents

Python Module Index

o
ontoma.interface, 12
ontoma.oxo, 13
ontoma.zooma, 13

15

OnToma

16 Python Module Index

Index

F
filter_identifiers_by_efo_current() (on-

toma.interface.OnToma method), 12
find_term() (ontoma.interface.OnToma method), 12

G
get_label_from_efo() (ontoma.interface.OnToma

method), 13

O
OnToma (class in ontoma.interface), 12
ontoma.interface (module), 12
ontoma.oxo (module), 13
ontoma.zooma (module), 13
OxoClient (class in ontoma.oxo), 13

S
search() (ontoma.oxo.OxoClient method), 13
search() (ontoma.zooma.ZoomaClient method), 13
step01_owl_identifier_match() (on-

toma.interface.OnToma method), 13
step02_owl_db_xref() (ontoma.interface.OnToma

method), 13
step03_manual_xref() (ontoma.interface.OnToma

method), 13
step04_oxo_query() (ontoma.interface.OnToma

method), 13
step05_owl_name_match() (on-

toma.interface.OnToma method), 13
step06_owl_exact_synonym() (on-

toma.interface.OnToma method), 13
step07_manual_mapping() (on-

toma.interface.OnToma method), 13
step08_zooma_high_confidence() (on-

toma.interface.OnToma method), 13
step09_owl_related_synonym() (on-

toma.interface.OnToma method), 13
step10_zooma_any() (ontoma.interface.OnToma

method), 13

Z
ZoomaClient (class in ontoma.zooma), 13

17

	Introduction
	Installing OnToma
	Running OnToma from CLI
	Running OnToma from Python code
	Speeding up subsequent OnToma runs
	Contents
	Development
	OnToma interface
	ZOOMA wrapper
	OXO wrapper

	Python Module Index
	Index

